
A ThreatModeler White Paper
May 2022

Top 10 Architectural Flaws
Threat Modeling Identifies

Contents
Introduction 	 3

1 Authenticated Access without Authorization 	 4

2 Command Injection through Inversion of Control 	 5

3 Failure to Protect Integrity in Serial or Persisted Streams 	 6

4 Applying an Incorrect Cryptographic Primitive 	 7

5 Mismatch of Authorization Resolution 	 8

6 Refactoring Causes Security Control Collapse 	 9

7 Confused Deputy, Failure to Trace Distributed Flows 	 10

8 Aggregate Data Gains Privilege or Sensitivity 	 11

9 Exporting Privilege to an Untrusted Component 	 12

10 Assigning Unwarranted “Trust” to a Process or Component 	 13

Conclusion 	 14

Top 10 Architectural Flaws Threat Modeling Identifies 2

Introduction
In this eBook, we identify the 10 architectural
flaws, or risks, threat modeling identifies.� To give
a sense of perspective, we classify where each of these
flaws fits into the STRIDE framework. STRIDE is an
mnemonic for identifying security threats: Spoofing,
Tampering, Repudiation, Information disclosure,
Denial of Service and Elevation of privilege.

For each flaw we detail its technical impact, and where
possible, point out the business implications as well.
Also, where possible, we try to offer an estimate for
the magnitude of the challenge of protecting against
a particular flaw, circumstances under which the flaw
tends to occur and some examples of the flaw.

While the goal of this eBook is not to make you feel
overwhelmed, it is intended to point out that it’s
easy to get a false sense of security when it comes
to security. Use this eBook as a starting point for
where to look for architectural flaws, especially
when the architecture changes. Because at the end
of the day, threat modeling is a mental exercise in
thinking through what you’re adversary is going to
do. Hopefully this eBook helps you in that regard.

NOTE: This eBook is intended for a technical audience, primarily those involved in day-to-day development.

Top 10 Architectural Flaws Threat Modeling Identifies 3

1 Authenticated Access
without Authorization

Applications and services often correctly
differentiate unauthenticated and authenticated
access to services and functionality by
gating functionality with checks on a valid
user login and session.� This flaw surfaces when
an architecture’s point of enforcement doesn’t
also correlate the principal seeking to access
functionality or data with authorization prior to
granting access. Access may be mitigated on a role-
based or capability-/attribute-based scheme.

The technical impact of this flaw is essentially
improper horizontal or vertical privilege escalation.
The business impact of this flaw is tied to the value
of that impersonation. From a STRIDE perspective,
this falls under “Spoofing” and almost always
“Privilege Escalation”. It is undoubtedly one of
the top three most common flaws found. 

Example of Flaw
Successfully executing a forced-browsing attack (e.g., logging in as User A then replacing request
data to access User B’s account page) is an exemplary symptom of this flaw. Another is when Service
B authenticates requests from Service B but doesn’t differentiate user or administrative access.

Top 10 Architectural Flaws Threat Modeling Identifies 4

2Command Injection through
Inversion of Control

In support of dynamism, applications and
services often accept input (data) that it
evaluates directly or converts into code to
subsequently load/link/execute.� This flaw
surfaces when an architecture is designed to
accept free-form and untrusted input, rather than
a known allow-list, and then ‘inverts-control’ to
execute that input either directly or otherwise.

The technical impact of this flaw is often
catastrophic, as it grants an attacker the ability
to introduce and execute arbitrary code either
within (or underneath) the application’s security
controls or even process space. These technical
impacts give the attacker a relatively arbitrary
capacity for business impact. Though a struggle,
this flaw aligns with “Tampering” in STRIDE. 

Example of Flaw
This flaw manifests as many canonical examples in languages that allow direct memory access
(e.g., buffer overflows in C/C++) or serialization of objects (e.g., serialization and object-
remoting attacks in Java/.NET). Examples of this flaw exist in languages that do not allow direct
memory access where string evaluation occurs (e.g., eval() in Python). The flaw also includes
“breakouts” where use of a fork/exec based on user input occurs (e.g., exec() in PHP).

Top 10 Architectural Flaws Threat Modeling Identifies 5

3Failure to Protect Integrity in
Serial or Persisted Streams

As ecosystems become more decentralized
(i.e., federated), the opportunity for central
control over integrity and permission becomes
less attractive or untenable.� More data, including
security meta-data such as ACLs, is transported
and persisted remotely from trusted systems. This
flaw surfaces when an architecture exports data
to clients or 3rd-party systems and an attacker
can modify that data in transport or as stored.

The technical impact of this finding depends on where,
if any place, integrity checks apply. Sometimes an
attacker is able to manipulate data but only up to the
point of a transaction’s verification and clearing, thus
limiting its value. The business impact of this flaw is
directly related to the data being manipulated. This
flaw aligns with “Tampering” in the STRIDE model. 

Example of Flaw
Examples of this flaw include manipulation of a browser-based DOM or session data such as a JWT.
Manipulation may target user data, such as an “available balance” or security-metadata (such as scope of
access or ACLs within a JWT). This flaw may also target serialized request or object stream data, where
integrity checks are not applied.

Top 10 Architectural Flaws Threat Modeling Identifies 6

4 Applying an Incorrect
Cryptographic Primitive

Cryptography is exceptionally hard.� It’s common
knowledge that “rolling your own crypto” is folly, but
even using expert-provided, well-tested, or certified
components can be challenging. This class of flaw
occurs when a design employs a control but for a
purpose for which it is ineffective. It’s not uncommon
for engineers to apply integrity checks to data
(validating it hasn’t changed since write) without a
keyed signature indicating who wrote that data. Other
situations see designs protect privacy, when they
valued integrity or provenance, or otherwise exchanged

one capability intended for another of the three.

This class of flaw is both impactful and insidious.
Because a control is in place, engineers and security are
left with a false sense of security. The technical impact,
of course, is that the control is wholly ineffective for
its intended purpose. The business impact of this flaw
is tied to the failed control objective: provenance,
integrity, or privacy. As such, these flaws align with
“Spoofing”, “Tampering”, or “Escalation of Privilege”
(where one can read another’s data) in STRIDE. 

Example of Flaw
Examples of this flaw include using a hash rather than an HMAC and encrypting without first signing
or applying a signature. A failure in more subtle distinctions arises when engineers implement a salt rather
than a nonce.

Top 10 Architectural Flaws Threat Modeling Identifies 7

5Mismatch of Authorization
Resolution

Designs may implement an authorization check
but not at the same level of resolution between
systems or services.� For example, authorization
may occur through user-level, or even fine-grained
attribute-/capability-based access control in one
system/service, then role-based access control in
the next. In these cases, the second system “loses”
resolution necessary to make similarly fine-grained
decisions as the first (is the user requesting access to
their own data, or another’s?). Where architectures
propagate attributes through systems allowing finer-

grained decision-making capability in a distributed
fashion, they may not be properly protected.

The technical impact of this flaw is often that an
attacker can coerce the system to do something
for which it doesn’t have permission, aligning with
“Spoofing” or “Privilege Escalation” in STRIDE.
The business impact of this corresponds to a
breakdown of access control, and often—due to
the lack of resolution at the policy enforcement
point—carries with it a loss of auditability. 

Example of Flaw
Web applications, which authenticate user-specific sessions but use only role-based access control
or system-to-system authentication to connect to services (e.g., a database), exhibit this flaw.
Message and queuing systems, databases, and other systems that collocate different users’, systems’,
or partners’ data often fall prey to this flaw. They authenticate and authorize at a “connection” or
“channel” level, while routing/processing messages with their own, more fine-grained accessibility/
modifiability is lost. Finally, the affinity of key material with cryptographic primitives may manifest this
flaw. Reusing keys or IVs between users would allow each to see or manipulate the others’ data.

Top 10 Architectural Flaws Threat Modeling Identifies 8

6Refactoring Causes Security
Control Collapse

When a security control is properly introduced
to an architecture, the work isn’t done.� This class
of flaw emerges when an architecture undergoes
change invalidating the effectiveness of a security
control. Conceptually, architectural examples that
invalidate a security control might include shifting
a platform on which an application is provided,
enabling user access through a new means, or
reusing data in a way it wasn’t originally intended.

Like #4, the technical impact of this flaw is the
complete ineffectiveness of a control in the face
of attack. Business impact includes that same
false sense of security, failure commensurate
with that which the control protected. May
align with any STRIDE category. 

Example of Flaw
The canonical example of this flaw is when applications relied on SMS as a second authentication factor,
but invalided the “out of band” nature of the SMS by providing users a mobile app. Now, attackers
could steal a phone and reset the user’s password conveniently by leveraging their MFA control.
Reusing previously secret identifiers as public IDs (e.g. CCN, SSN) is another common example.

Top 10 Architectural Flaws Threat Modeling Identifies 9

7Confused Deputy, Failure to
Trace Distributed Flows

Components within an architecture sometime
fail to understand “on behalf of what or whom”
they are executing a privileged action.� When this
occurs, an attacker may “confuse” such a component
into conducting malicious actions. The flawed
component may not evaluate the appropriate access
control or other contextual information as a gating
function to the request. Particularly in concert with
Flaw #5, the information necessary for the component

to make an authorization decision may no longer be
available within that scope of a distributed trace.

The technical implication of a confused deputy
is akin to misuse of sudo or admin access on an
OS. Privilege escalation occurs and the audit
trail between the attacker’s session may not be
easily traced, depending on the auditability of the
privileged component and how diligently it tracks
on behalf of which callers it takes action. 

Example of Flaw
Common examples of this flaw include administrative or account management services, such as exist in
customer service or back-office applications. These components may have universal read/write access to
customer entities to handle corruption or errors and are intended to be used at the care/discretion of their
human operators. However, the services themselves may not put any guardrails on the actual functionality.

Top 10 Architectural Flaws Threat Modeling Identifies 10

8Aggregate Data Gains
Privilege or Sensitivity

Even when systems diligently label confidential
or otherwise sensitive information within
their purview,� they may not recognize
circumstances where the aggregation of certain
less sensitive information reaches an equivalent
sensitivity or impact to that which they carefully
label or protect. For instance, knowing a user’s
mother’s maiden name or “last four” may allow

authentication or credential reset, thus reaching
an equivalent sensitivity as the credential itself.

Like many flaws documented herein, the technical risk
is of an unexpectedly weak security posture. In this
case, the exposure of data rather than an ineffective
control. Again, the risk to the business is of risk
miscalculation due to that unexpected exposure. 

Example of Flaw
Examples of this flaw are common in authentication systems, particularly with secondary secrets, as well as
in session management (where identifiers may “code for” an authenticated user and access to their data).
Similarly, with cryptography, it’s evident that a key codes for the ability to encrypt/decrypt/sign, but more
subtly, access to an IV or salt may adjust the sensitivity of ciphertext from public to “potentially reversible”.

Top 10 Architectural Flaws Threat Modeling Identifies 11

9Exporting Privilege to an
Untrusted Component

In any distributed system, some components
will possess privileged data or functionality
while others aren’t entrusted with the same
capabilities.� For instance, store-front applications
reserve the privilege of verifying a user has paid
before shipping and banking backends validate
available funds before making a transfer. This
flaw emerges when the system—sometimes for
performance reasons—exports such privileged data
or operations to a component that can be controlled

by an attacker. When exploited, the attacker can
remove security controls, such as validations, or
modify data and functionality to their benefit.

The technical impact of this flaw aligns with
“Tampering” and can amount to data manipulation,
bypassing exported validations, authorizations, or
other security controls. The business impact is in
analog: the customer or partner has been given
responsibility the business intended to hold for itself. 

Example of Flaw
Client-side (browser or mobile-device) validation is perhaps the most understood manifestation
of this architectural flaw. However, in zero-trust architectures, clients or distributed components
may be best suited to protect and sign data because they produced it. It’s the attacker’s
prerogative to delete any aspect of the (or the entire) client, to their benefit.

Top 10 Architectural Flaws Threat Modeling Identifies 12

10Assigning Unwarranted “Trust”
to a Process or Component

Threat modelers often draw “trust zones”
partitioning their diagrams (and by analog,
their systems).� There are implied expectations of
that boundary: the user is authenticated; the data
is encrypted; attackers can observe information in
transport; and so forth. “Trust boundaries” are almost
never accompanied by an explicit characterization
as to what trust entails. This flaw emerges when two
components a) communicate across a boundary but

possess differing expectations of the security control
mitigating that boundary or b) communicate within
a boundary but take for granted security properties
or posture of the other (i.e., a boundary is missing).

The technical implication of unwarranted trust
may apply to any of the STRIDE categories
and roughly follow the prior flaw. 

Example of Flaw
Simple infrastructural examples make up the corpus of our understanding of web systems. A firewall lets
all web traffic, even malicious, into the webserver. Image registries validate the integrity of components
downloaded but typically not their provenance or constituency. Zero-trust architectures may replicate these
failures at the application layer, with fancier security controls in place such as any two components can
communicate over an encrypted channel once authenticated, but what characterizes “who can call what for
which reasons?”.

Top 10 Architectural Flaws Threat Modeling Identifies 13

Conclusion
We covered the 10 architectural flaws threat
modeling identifies.� If after reading this eBook
you get the sense that there are a lot of ways a
system can fail to protect data/users, we get it.
And if you feel like the only way to consistently
stay on top of the flaws is by incorporating a
repeatable discipline like threat modeling into your
development processes, we couldn’t agree more.

We hope you found the information in this eBook
useful and that it answered many of your questions.
But, if you still have questions about how threat
modeling can be used to find architectural flaws, we
encourage you to contact us here at ThreatModeler.
We’ll be happy to answer your questions.

Top 10 Architectural Flaws Threat Modeling Identifies 14

https://go.threatmodeler.com/contact-page

	Introduction
	1Authenticated Access without Authorization
	2Command Injection through Inversion of Control
	3Failure to Protect Integrity in Serial or Persisted Streams
	4Applying an Incorrect Cryptographic Primitive
	5Mismatch of Authorization Resolution
	6Refactoring Causes Security Control Collapse
	7Confused Deputy, Failure to Trace Distributed Flows
	8Aggregate Data Gains Privilege or Sensitivity
	9Exporting Privilege to an Untrusted Component
	10Assigning Unwarranted “Trust” to a Process or Component
	Conclusion

